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ABSTRACT

Several experiments have suggested that the streamwise vortices, with their ...

accompanying low momentum streaks, in a turbulent boundary layer have a char-

acteristic spanwise wavelength of approximately X+ = 100. A mechanism is
z

proposed which selects a comparable spanwise wavelength and produces counter-

rotating streamwise vortices in a turbulent boundary layer. Examining the

equations which describe the small deviation of the velocity field from its

time-average, it is found that the Benney-Gustavsson resonance (Studies in

Applied Mathematics 3, 1981) occurs with such a boundary layer velocity pro-

file. It is shown that, as an integral part of this resonance, there is a

mean secondary flow which has a spanwise wavelength Xz = 90 and whose
zS

velocities exhibit a counter-rotating streanwise vortex structure.
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1. INTRODUCTION 0

During the last decade, much of the research in turbulent boundary layers has

been concerned with the coherent eddy structures that have been observed near _

the rigid boundary. The quasi-deterministic, randomly-located sequence of

coherent structures, collectively called the bursting process, is believed to

play a dominant role in the production and maintenance of turbulent flow (for

a review, see Cantwell [1]).

One important aspect of the bursting process is believed, by many investiga-

tors, to be the counter-rotating streamwise vortex structure with its accom-

panying low-speed streaks (for example, see Blackwelder [2]). From the many

measurements of these streaks, it has been found that the mean streak spacing

is approximately 100 vp -r , where v is the kinematic viscosity, p is the
w

density and Tw is the shear stress at the wall. From flow visualizations [3],

these low-speed streaks are usually observed to end by being lifted away from

the wall. As they are lifted, the streaks start to oscillate with increasing

amplitude leading to what is called breakdown. Corino and Brodkey [4] showed

that, soon after this breakdown, a large scale motion emanating from the outer

flowfield approaches the wall and "cleans" the entire region of the chaotic

motion. This phase of the bursting process has been called the sweep.

In experiments using hot-wire anemometers, the bursting process is most easily

characterized by a sharp acceleration or the streamwise velocity as reported •

by Wallace et al. [5] and Blackwelder and Kaplan [6]. To single out the

bursting process from the chaotic turbulent motions, Blackwelder and Kaplan

used a burst detection technique which relies on this feature of the bursting

process. From conditional ensemble averages of data taken in such a way,

Blackwelder suggested that the sharp acceleration is the transition between

the low-speed streak and the sweep.

Recently, Blackwelder emphasized the similarity between the turbulent boundary

layer bursting process and the transition problem [7]. In particular, he

found that the conditionally averaged streanwise velocity profile is highly

inflectional at and before the burst detection. He further speculated that a

-1- . . "
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localized shear layer instability might play a role as in the transition prob- 0

lem. The spatial scale of the oscillation of the lifted streak observed in

flow visualizations was noted to be consistent with such an interpretation.

In any case, in Blackwelder's model, the counter-rotating streamwise vortex

pair plays several important roles. The low-speed streaks are attributed to

the vortex pair' s- 'pumping' action of the low speed fluid away from the wall.

In turn, the low-speed region is responsible (at least partially) for the

inflectional velocity profile which eventually leads to breakdown through a

shear-layer instability mechanism. 0

The aforementioned similarity between the bursting process and the transition

problem has suggested to some that the streamwise vortices observed in either

case might be due to the same mechanism. In this vein, Coles [81 speculated

that the streamwise vortices in a turbulent boundary layer might be the result

of a Taylor-Gortler type instability in which the concave flow is due to the

large scale notion in the outer flowfield. This idea predicts a spanwise

wavenumber for the vortex structure consistent with experiment [21. However,

it appears difficult to justify the extention of the steady state Taylor-

Gortler stability analysis to the unsteady flowfield near the flat wall.

Bentley and Lin [9,101 proposed another mechanism which attributes the vortex

structure in the transitional flow to the secondary mean flow induced by the

nonlinear interaction of a two and a three-dimensional wave. Although this

mechanism reproduced the essential features of Klebanoff's experiment [111, it

has been subject to some criticism. One of the weak points of this theory is

that the spanwise wavenumber of the three dimensional wave was chosen to fit

the experimental data rather than being predicted (see Stuart [121).

The purpose of this paper is to follow a somewhat different approach to the .

cause for streamwise vortices in a turbulent boundary layer. The present

hypothesis sterms from what is known as the Benney-Gustavsson resonance [131 in

which a three-dimensional disturbance with certain wavenumbers can grow to a

relatively large amplitude. Benney and Gustavsson showed that there exist

exact resonances in various linearized laminar stability problems. However,

they found that the resonance condition is only approximately satisfied for

-2-
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0

the case of Blausius flow. The effects of the resonance to the transition

problem is thus obscured by the existence of an unstable Tollmien-Schlichting

wave and the fact that the resonance is only 'close'.

The turbulent pipe flow experiment by Morrison and Kronauer [141 indicates

that the statistically dominant streamwise fluctuations have a wavelike cha-

racter. Further, it appears that a linear or weakly nonlinear perturbation

analysis around the mean velocity might be applicable to the turbulent bound-

ary layer problem. Along this line, Landahl [15] and, subsequently, Bark

[16], examined the implications of the linear theory with given source terms

coming from an assumed model for the Reynolds stress. A particularly interest-

ing result is that Bark's computed energy spectrum for the streamwise velocity

fluctuations displays preferred scales in the spanwise and streamwise direc-

tions and in time which are in good agreement with Morrison and Kronauer's

measurements. However, the bandwidth of the computed spectrum is a few orders

of magnitude smaller than was observed experimentally.

Bark attributed the sharpness of his computed spectrum to the crudeness of his

model for the Reynold's stress. However, his extremely sharp spectral peak

suggests other possibiliLies such as some sort of resonance. Bark's method of

solving the linearized equation for the vertical vorticity implicitly assumed

that there is no resonance such as suggested by Benney and Gustavsson. This

raises an interesting possibility that the Benney-Gustavsson resonance becomes

exact if one replaces the Blasius profile with turbulent boundary layer pro-

file. By examining the eigenvalues of the Orr-Sonmerfeld problem and the

vertical vorticity equation, this was found to be the case. Details will be

discussed in Section 2. Since this resonance becomes exact and since there is

no unstable mode for the mean velocity profile, the effects of the resonance

could be more pronounced than for the case of the transition problem. Fur-

thermore, the existence of this resonance seems to explain the observed scales

of orrison and Kronauer's experinent and the extreme sharpness of Bark's com-

puted spectral peak.

-3-
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S

ith this explanation for the preferred scales of the 3-dimensional disturb-

ices, we then examine the effects of the nonlinear interaction on this reso-

int fundamental mode using the weakly nonlinear perturbation technique. It is ..

lown in Section 3 that, as an integral part of this resonance, there is a

.an secondary flow which has a spanwise wavelength 90 /-/wand whose

elocities exhibit a counter-rotating streamwise vortex structure. Further

iscussions are made in Section 4.

0
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n Figure 7, the y-dependence of the computed vortex structure with accompany-

ng low speed streaks is compared with the vortex structure determined with

in's numerical simulation [171. Only the shape of the vortex structure is

ompared since the absolute values are not available in our analysis and the

elative strengths of <V>max and <U>nax are not available in Kim's paper. The

imilarity of our computed vortex shape with Kim's simulation supports the

elevance of the resonance mechanism to the bursting phenomena. The agreement

etween Kim's simulation results and Blackwelder and Kaplan's experimental

esults is generally good if the slight differences are attributed to differ-

nces between temporal and spatial averaging.

S i
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ro summarize, the induced mean flow is given by 0

UU (y 't )  cos(2BoZ) [ L.

0S

V. V (y,t) cos(2SoZ) (3.22)

-(20d-1 aVMl/ay sin(2 0Z)

where U is related to Nt., by

u N 12 o  (3.23)
o

The y-t dependence of UM is plotted in the first part of Figure 5. As for the

vertical component of the induced mean flow, the y-dependence of U is rather

independent of time. The amplitude of U reaches its maximum value at

t 150 and then decays very slowly with time. In order to interpret the

results plotted in Figure 5, it is helpful to plot the projection, on the

(y,z)-plane, of the streamlines. Figure 6 shows the streamline pattern at

t= 40. Actually, since the y-dependence of V, does not change very much

with time either, the streamline pattern is about the same for all time. The

streamline pattern clearly shows the counter-rotating longitudinal vortex

structure of the induced mean flow. The spanwise wavelength, X z, of the •

induced mean flow is 90 which compares favorably with the experimental value

of 100.

At z+ = 0, the counter-rotating vortices pump the low-speed fluid up away from

the wall so that the streamwise component of the induced mean flow would show

a momentum defect. These low-speed streaks would occur every 90 wall units in

the spanwise direction.

-17-
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The function Vt.(t,y) is then computed by taking the inverse Laplace transform

where the integration contour in the complex s-plane should lie below all the

poles and the branch cut of the integrand. Note that the pole associated with

the source term is located on the branch cut since R, > 2$2/JmiI. Further,

the singularities in the expressions for the coefficients A±, etc., are remov-

able. Therefore, the contour can be deformed to a branch cut integral. For

the integration along the branch cut and for the integration over yo, we have

to rely on numerical evaluation. Figure 5 (the second plot) shows the

results. Note that the y-dependence of Vr1(y,t) does not change very much with 5

tine. The amplitude of Vt. reaches its maximum value at t+ - tu2 /V - 40 and
T

then decays very slowly compared to the source term's decay rate. (Recall

that the source term of equation (3.13) decays as exp(-0.074 t+); in contrast,

the value of Vt, at t+ = 200 is still about 1/3 of its peak.) 5

To obtain the horizontal components of the induced mean flow, equation (3.5)

is examined up to the order of el/2. Using equation (3.10) for U(0 ) and I(0 ) ,

and equation (3.12) for 0 0 ) , the equation for tj(1/2) can be simplified to

+ U - T A] [j(12) = 2B iii' VM sin(2BoZ) (3.20)

As for the computation for Vt,,, a solution is sought of the form

N ( 1/2) 1ti(y,t) sin(2BoZ) (3.21)

The resulting equation for N,(y,t) is solved again as an initial value problem 5

assuming that N., vanishes initially. Using the Laplace transform and the

Green's function technique, the computation of N., can also be reduced to an

evaluation of an integral over yo and over a contour in the frequency domain.

Once N.I. is computed, the horizontal components of the induced mean flow are

obtained using the continuity equation and the definition of the vertical

vorticity.

S

-16- _S
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To obtain a solution Vr(y,t) of equation (3.13), which vanishes at y = , we O

solve equation (3.13) as an initial value problem without assuming the expo-

nential time dependence. Since it is not clear which initial condition for

Vt.(y,t) is an appropriate one, we shall assume that it vanishes initially and

examine the y and t dependences of the resulting solution. S

In order to solve the initial value problem, the Laplace transform of equation

(3.13) is taken to give

D1 2 2a2 B2 a(n n

[is (!- 42) - 42 4 BB 0 00 (3.17)
3 2 421 - (2+B2)2 3y ZW I°=17

where V 11 is the Laplace transform of V1 defined as

-ist
V (y's) = f dt e V (yt) .(3.18)

0

The above equation for V is solved using the Green's function technique. The
M

Green's function takes the following forr,

-(4802+iRs) i/
2 (Y-Y) -2$(y-yo)

A+e 0 + B +e 0 for y > y 0  A

(3.19)

-(42+iRs) /2 (y-yo) -2%(y-y ° ) (40 2+iRs) I 2 (y-y° ) 28(y-y °)
Ae +Be 0 +Ce 0+De

for y < y

where yo denotes the support of the delta function, and the coefficients A:,

B±, C. and D- are determined from the boundary condition at the wall and the

continuity of G, G', G" and the jump condition on G.' at y = yo. Since

does not have a homogeneous solution, the Green's function is uniquely defined

by these conditions. The branch cut associated with the square root is chosen

as in Figure 4.

-15- S
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where w, is the imaginary part of wo. The function V0 2(y) is determined from

[(2~+2a~ a2  
-1 a22[(-2iw+2iau) (-y - 4a2 ) _ 2ic " (_ - 4a2] Vo2

0 0 ay2  0 F ay2  0 0

AS

c282 a(; oo)
= - 2B2  0 00 (3.14)

2+ 0

As long as (2w.) is not an eigenfrequency of the O-S problem for the case of

= 2%o and 8 = 0, the above equation for V0 2 has a solution.

However, the equation for the induced mean flow requires special treatment.

Although the source term in the equation for VI decays with time as exp(2wlt),

the solution V, cannot have the same time dependence. To illustrate this

fact, we first assume that V1l has the same exponential time-dependence. Then,

equation (3.13) reduces to

2 2  1 ( 2  )2] a 2 a (n0 no )
iy2 4022 _ ] v̂ :422 4 (3.15)3Y Y2  (,,2,82 ) 2 y

where V.1 is defined by Vl Vi(y)exp(2w t).For simplicity of argument, we

assume that the right-hand side of the above equation vanishes for large
^S

values of y. The asymptotic solution for Vi will then be of the form,

-20Oy -(402+2wyR,)I/2 Y

V =a e 0+ b e (3.16)

If (2wR,+ 480) were positive, then the sign of the square root could be

chosen to be Positive SO that VrN would vanish at infinity. However, the argu-

ment of the square root at the resonant point is negative.

-14-
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where ao and So are the wavenumbers at the direct resonance. Using the con-

tinuity equation and the definition of N, U(0 ) and 0 0 ) can be obtained from
00) "as

u (0) - 00o cosBQz
0 -o i aoX i Wot

: B e +i( * ) (3.10)

i n ozI0 0 sin~z

a2 +62

0 0

The equation for 0 0 ) is obtained from equation (3.4);

1(L+ ) U _, 1 A21 v(° 5 6 OI (uu 0 )
ax . ax2ay

S
33 @()1( ) 3 ,3O

+ 2 u(O)w((O) + " (,(O)1 J(O)) (3.11)ax3aza y az2ay

The time averages of u(O)u (0 ) and W(O)W (0 ) are dropped since U(0 ) and W(0 )

decay exponentially with time.

An exaination of the source terms shows that the particular solution for 0 5 "

is of the form 0

2iaox-2iwot
V( )  V(y,t) cos(2$oZ) + (Vo2 (Y) e +* ) (3.12)

We will refer to the first term as the induced mean flow and the second term

as the induced second harmonic. The function Vr1(y,t) is determined as a solu-

tion of the following equation

a a2  1 a2  2 0 0 a(; 0 n,0 2wit -
42)- 402) ] 4VBB e (3.13)

aY2 0Y
2  (2+02)2 ay e

-13-
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1/ 1U au a2  -U

+ . .. lN+e 1  [ xz( UU) -(wuww-m))

(32 32 -
aZ2  ax2 J

+ C (UUV) -axay V = 0 (3.5)

au + au + C1 /2 3V = 36
-X az ay(36

N a -z ax (3.7)

Equation (3.5) is linear when £ 0, and a systematic perturbation scheme is
readily developed (i.e., N = N(O) + e1/2 N1(1/2) + .. ,etc.). The zeroth
order term in such an expansion gives

()icz x-iW t -ia x-iw t
n~U Bn(y) sin z e 0 0 + n i 0 (y) sin 08 e 0 0 (3.8)

where *denotes the complex conjugate. The function n0is determined as a
solution to the elgenvalue problem

[icz (-c) -1 3a2 -
2 -02 )] o 39

0 y 0 0 p0( 0

-12-
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3. MEAN FLOW INDUCED BY THE RESONATING FUNDAMENTAL MODES 0

From equations (2.15) and (2.16), it is apparent that if a, a and W correspond

to a direct resonance, then so do a, -6 and w. So, there are at least two

resonant modes. The nonlinear theoretical consequences of two or more reso- 0

nant modes were analyzed by Benney and Gustavsson. We shall rely on their

formalism to compute the mean flow induced by these resonant modes.

They first observed that equations (2.6) and (2.7) imply that, for the case of S

two resonant modes, the dominant terms in the higher-order expansion for v and

n are of the form

V (I + 62t4 + .. •) eiax+iBz ' iwt (3.1)

(t + s2 t5 + .. ) eiax+i z- iwt (3.2)

where c is the nonlinear parameter related to the small amplitude of fluctua-

tion. Thus, they argue, the appropriate time scale is c1 /2 t and the perturba- S

tion must be rescaled in the form

v : V, (u,w,n) : "1/2 (U,W,N) (3.3)

The nonlinear perturbation equations then become

(L + u -) A - 1 A21 V

- -- - (UU-UU) - 2 (U1-1_ _ - (__-_ .

x2ay axazay az2-y wJ)

+ el/2 + - ay2~ (-~7(UV-UV)+ (v-)]

3XC[(2 + _Z 5- (VVVV) 0 (3.4)

-1i- S
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density as a function of wR and either a or 0. Figure 3 shows their contour 0

plots of u(a+,wR) and ul$ ,wR) where these quantities are related to the

power spectrum Pu as

o (a+ w+ a + w + P (a+ w+) (2.27) 0

+ ++ ++ + (2.28)UB,w+ ) : 0 w+ PU(0 ,m 2.8
u u

These spectral functions plotted in logarithm scales permit one to make a

visual comparison of the relative power in various wavenumber/frequency bands

(the power is the contour level times the area as seen in the figure).

The particular spectra measured at y 14.8 were chosen because this location

is the closest of their data to the peak of the resonant free mode of the

vertical vorticity equation (see Figure 1). The predicted position of the

spectral peak based on the direct resonance is denoted by the intersection of *0

the two dashed lines in each spectrum. The prediction is in good agreement

with the experimental data.

9

0
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0 nu v dy_
a = - V d (2.23)

f nF nF dy

tie examined whether such a resonance occurs when U is taken to be a turbulent

boundary layer's mean profile. For this purpose, we have to rely on numerical

solutions of the eigenvalue problems associated with equations (2.15) and

(2.18). If two eigenvalues coincide, then resonant growth occurs. One such

resonance was found when the wavenumbers (expressed in 'wall units';

C v/u , S v/ur, where u /77)r

+= 0.0093 (2.24)

0+ = 0.035 (2.25)

The location of this resonance in this dimensionless wavenumber appears to be

independent of the Reynolds number (we examined the Reynolds number dependence

for 1000 R, r 15,000). At this resonant point the eigenfrequencies of the

O-S and the V-V equations are the same and given by

0.090 - iO.037 (2.26)u

This resonance was found numerically by locating the intersection of the zero 0

lines of the real and the imaginary parts of [c(a,s;R,) - c'(ci,B;R,)] in the

a-0 plane. The boundary layer velocity profile used for these computations

incorporated the well-known Law of the Wall and Law of the Wake along with a

sublayer "patch" based on van Driest's damping factor. This sublayer patch

results in a velocity profile that is in good agreement with experiment over

the entire boundary layer. The normal coordinate dependence of the O-S eigen-

mode and V-V eigenmode are plotted in Figures 1 and 2, respectively.

Because of the potentially large amplitude associated with the secular

behavior, the above values of a+, 6+ and w (real part of w+) should corres-

pond to the position of a local peak in the power spectral density of the

horizontal velocity. Experimental evidence for the correctness of this pre-

diction can be fouid in Morrison and Kronauer's experiment [14]. Measuring

the fluctuation of the streamwise velocity, they obtained the power spectral

-9- 0Q

. .. . . . . . . .- -.. .. . . . .. . . . . .. . .. . . . o i .



Dynamics Technology
DT-8154-06

^ dv
subject to the boundary conditions; v = 0 d = :0 , n : 0 at y = 0, -. Here,

c denotes the phase velocity defined by c = w/a. Equation (2.15) is the Orr-

Sommerfeld (O-S) equation, and (2.16) will be referred to as the vertical vor- ..-

ticity (V-V) equation. The O-S eigenvalue problem leads to a set of

* eigenvalues

c = c(a, 0; R,) (2.17)

The V-V equation is usually solved as a forced response. This approach

implicitly assumes that the eigenfrequencies of the O-S equation do not match

any of the free mode eigenfrequencies for the V-V equation, that is, the

eigenfrequencies of the problem

[(12_ - * 2-B 2 )] nF 0 0 at y = 0, . (2.18)

Denoting the set of V-V free-mode eigenfrequencies by

c' c'(a,8;R,) , (2.19)

the condition for direct resonance can be written as

• :~ . (2.20)

If such a resonant condition is satisfied, the solution to the V-V equation

behaves as

AS

n at nF(y) e- iwt+iax+iBz (2.21)

while

v(y) e- i t+ i ~X+iBz (2.22)

Note that the secular solution for n initially grows linearly with time so

that relatively large horizontal motions might be induced. Here, the parame-

ter 'a' which determines the initial growth rate of the secular term is

-8--°
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S, ,- (uu u-) + 33 (vu- T) + w- wu ) (2.8)

S2 = - (uv -uv) + (vv -vv) + -(wv -WV) (2.9)

S3 : X (uw - uw) + .--(VW -VW) + .(WW -WW) . (2.10)

The horizontal components of the velocity perturbation are related to v and n

by the equations

au + aw av (2.11)

au - - (2.12)
*- _

lie next linearize equation (2.3) and seek normal mode solutions of the form

v = v(y) eiax+ ioz- iwt (2.13)

Ila.

;(y) ei(x+i~ziwt (2.14)

where a and B are wavenumber components in the streamwise and spanwise direc-

tion and w is the wave's frequency. The following equations are then obtained 5

- 32 - 1 ,2

[iCc(u-C) (-2-- (2- 2 )  iau" - - (  
2-82] V : 0 (2.15)

ay2  v(

[i((-c) - 1 a a2 -B2)] n - iBu' v (2.16)
*3y

2

-7-
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resonance by which disturbances with certain scales can grow, at least momen- .

tarily, by subtracting energy from the mean flows. Since the eigenmodes whose

peak values are near the turbulent boundary layer's sublayer decay rather

rapidly, such a resonance will only be effective if it occure in the lowest

possible order of the expansion in order to reverse the energy loss even

momentarily.

The direct resonance suggested by Benney and Gustavsson does arise ir the

linearized equations of (2.3) and (2.4). Another interesting property of the

direct resonance is that at a given Reynolds number, it occurs only at dis-

crete locations in wavenumber space (i.e., only those components with certain

combinations of wavelength and obliquity are resonant). Therefore, this reso-

nance seems to be an ideal candidate for a mechanism which allows disturbances

with certain scales to be energetically dominant.

To examine the possibility of direct resonance in a turbulent boundary layer, -

the small disturbance equations are made dimensionless by utilizing the bound-
ary layer's displacement thickness, 6*, and the freestream velocity 5. In

the non-dimensional form of the equations, we set u 6*/v z R. As is

customary for the boundary layer problem, x, y and z are taken to denote the

streamwise, the normal and the spanwise coordinates, respectively. The veloc-

ity components will be denoted by u , v and w. Elimination of the pressure

from (2.3) gives

a + a xv a2  a2  D S , v (2.6)
+ A[(+T) S2 - = AV (.a - X2  ay2) axy zay1 

=F

+ n + uz +- - -- ]  =  An (2.7)

Here the prime denotes differentiation with respect to y, and n is the ver-

tical vorticity (n -w) e is a nonlinear parameter related to the

snall aplitude of the fluctuations, and Sj are defined by

-6-
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2. DIRECT RESONANCE IN A TURBULENT BOUNDARY LAYER

The velocity and pressure field in a turbulent boundary layer are split into a

mean and a fluctuating part according to

U. u. + u. (2.1)1 1 1

P =P+ p (2.2)

where the overbar denotes the time average. Then, the equations governing the

fluctuating part can be obtained by substituting (2.1) and (2.2) into the

Navier-Stokes equations and subtracting the mean part;

au. -- 1

+ u Vju i + u.Vju i = - Vip + vAu i + Vj (ujui-ujui) (2.3)

Vu.i = 0. (2.4)

Here, p is the density of the fluid and v is the kinematic viscosity, both

taken as constant.

The mean flow will be assumed to be parallel such that

5. : (5(y), 0, 0) (2.5)
1 a)

The mean velocity distribution 5(y) for the case of a turbulent boundary layer

will be considered to be known. The key assumption in our analysis of (2.3)

is that the effects of nonlinear terms are important only intermittently. The

streanwise vortices and the accompanying low-speed streaks which seem to pro-

vide the set-up for a burst are assumed to be weakly nonlinear phenomena.

With these assumptions, equations (2.3) and (2.4) are analyzed using perturha-

* tion techniques. It is well known that all the eigenvalues of the linearized

equations of (2.3) and (2.4) result in decaying solutions, i.e., all disturb-

ances lose energy to the mean flow. However, there might be a possible

-5-
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4. CONCLUDING REMARKS

It is natural to be concerned with the robustness of the direct resonance, and

the effects on the resonant condition of different boundary conditions, mean

* profiles, and with eddy viscosity terms in the equation were examined. 0

Including eddy viscosity terms does not affect the existence of a direct

resonance and the computed induced mean flow exhibits features similar to

those described in Section 3. With the mean profile measured by Reischman and

* Tiderman [18] for a polymer injected turbulent boundary layer, the direct

resonance was still found to remain. The spanwise wavenumber at the resonance

is, however, smaller than that for the 'universal' mean profile, which agrees

with experimental evidence of the wider streak spacing for a polymer added

6 flow. We also showed that direct resonance should be virtually unaffected

even if the rigid wall were replaced with a compliant wall.

As will be discussed, there are, of course, several aspects of the pr,--t

theory that remain incomplete. However, this study provides strong evidence

for the relevance of direct resonance to the streamwise vortices observed in a

turbulent boundary layer. In terms of the energy exchange between the mean

flow and the fluctuations, direct resonance can be interpreted as follows:

the source term in the linearized vertical vorticity equation (2.16) reflects

the production of horizontal disturbance energy by the action of the mean

field, u, against the uv-component of the Reynold's stresses. When the wave-

numbers and the frequency associated with an O-S eigenmode correspond to those

of a free mode of the vertical vorticity, the production of energy through the

uv-Reynolds stress becomes more efficient. This situation is similar to the

harmonic oscillator driven by broadband noise about its natural frequency.

There are two main pieces of evidence for the relevance of such a mechanism to
Q4

the bursting process. One is that the wavenumbers and frequency at resonance

are close to the values associated with the most intense waves measured by

Morrison and Kronauer near the sublayer boundary. The other is that the

secondary mean flow induced by this resonant fundamental mode contains a

streamwise vortex structure. The theoretical shape of the vortices and the

spacing of the accompanying low-speed streaks are comparable to experimental

findings.

i-, , ,l , i-1.-
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One of the problems which has not been addressed is a comparison of the reso-

nant point and other points in wavenumber space. In order to extend the

theory to predict the power spectral distribution, this issue has to be

addressed. A difficulty associated with this extension is that although the

resonant mode initially grows with time, the exponentially decaying factor

eventually dominates and the mode decays. Therefore, without a fresh supply

of disturbances, this resonance cannot sustain itself. In this respect, a

potentially important property of this resonant mode seems to be the inflec-

tional instability. As a test, we considered a one parameter family of mean

profiles which starts with the universal mean profile at s = 0 and ends with

the inflectional profile found by Blackwelder and Kaplan [61 at s = 1, (i.e.,

us(y) = (1-s) u(y) + s uBK, where uBK denotes the Blackwelder and Kaplan pro-

file). As s increases, the damping factor associated with the Orr-So mmerfeld

mode becomes smaller and near s = 0.7 that mode becomes unstable. As it

becomes unstable, it can no longer resonate with the vertical vorticity mode

since it can be shown analytically that all the free vertical vorticity modes

are damped. Although at s = 0 the resonant Orr-Sommerfeld mode is not the

least damped mode (actually it is the second least damped mode; the eigen-

frequency of the least damped mode being w+ = 0.13 + iO.035 at a+ and B+ given

by equations (2.24) and (2.25)), as s increases this order in damping factor

changes and only the resonant mode becomes unstable at s = 1. These two pro-

perties of the second mode (when ordered by the imaginary part of the eigen-

frequency), i.e., the direct resonance and the inflectional instability, might

be the reasons why it plays an important role even if it has a slightly larger

damping factor. However, to estimate these effects quantitatively appears to

require a more systematic account of the several lowest modes with varying

wavenumbers.

Another problem which has not been considered concerns the origin and math-

ematical description of the sweep. This might involve a very complicated

interaction between the outer flow and the near wall flow. In this regard, it

seems appropriate to mention that the induced mean flow in Section 3 was

represented by an integral along a branch cut in the complex frequency plane. .

This branch cut is what Mack [19] interpreted as the continuous spectrum. For

a frequency in this continuous spectrum, the corresponding eigensolution does

* •
-20-
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not decay exponentially but becomes oscillatory as y approaches infinity. This

raises the possibility that the interaction between the inner and the outer

flows could be described through the induced mean flow. Recall that the

initial condition for the induced mean flow was chosen to be zero in Section 3 :

since we do not know what an appropriate condition should be. Perhaps by

choosing an initial condition appropriate to a finite wavepacket rather than

an infinite plane wave, the time development of the induced mean flow would

exhibit characteristics of the sweep in addition to the vortex structure.

-

* S°
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Figure 1. The amplitude and phase distribution of the resonant
vertical vorticity mode.
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Figure 2. The amplitude and phase distribution of the resonant
Orr-Sommerfeld mode.
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Figure 3. Comparison of the resonant point with the peak position of
Morrison and Kronauer's spectrum.
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Figure 5. Plots of'-the vertical and streamwise components of the induced
mean flow. The maximum of IuM(Y~t)j is about 43% of the maximum
of Vr4(y~t).
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Figure 6. Computed streamline pattern of the induced mean flow at t+ = 40.
This pattern does not change for other values of t+ as can be
inferred from Figure 5.
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Figure 7. Comparison of the computed vortex structure with that of Kim [9],..
The solid line, represent the analysis resul t and the dots con-
nected with the dashed lines represent Kim's result at X+ = 125,
where X+ = 0 corresponds to the burst detection point. w, denotes ..
the streamwi se vorti clty , .'i: -'
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